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What it is:

0 A buffer between production and consumption

0 Can be placed across the system, and can be of different forms/scales
O Has a capital cost to set up, and running costs

What it does:

O Balances supply and demand

O Will affect production and consumption quantities and prices
0 Use it to reduce the ‘system’ cost

The ‘optimum’ level of storage will depend on the system,
and affect the system.

An independent owner/operator of storage will seek to
maximise their profit.



‘Conventional’ energy storage Mt coal = 3000 GWh,

(about two months output at 2GW)

Coal: ~40 TWh,
down from 125 TWh in 2005
Gas: ~30 TWh,

down from 55 TWh in 2005
Oil: 135 TWh, stable

(Source: Wilson, UoB, 2020)

Hot water cylinder: in
=~ 40% of homes, down
. from 62% in 2007
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Pumped hydro storage 15 |
total UK = 28 GWh,




Storing energy at large scale has become lower priority, with

Old
school
priorities Purpose

Geopolitical security

Economic security
System resilience
Meeting demand
Supply-side efficiency

Coupling energy servi

System stability

Efficient network utilisati

higher diversity in supplies, interconnection to other markets,
and reducing demand.

Description

Manage disruptions to imported energy.

Fuel bought in advance hedges against price swings.

rovide security of energy supply against system
shocks.

To meet peak demand for energy services.

Allow producers to run efficiently, and reduce
curtailment.

Enable the transformation of energy to another
service.

Maximising use of infrastructure.

Managing short-term supply/demand variations.

Increasing RES has meant higher priority for short timescale

storage.

But dominance of RES and increasing
electrification will flip priorities again... and again.

New
wave



The roadmap

Purpose

O Inform research agenda: Government and UKRI funding and policy

0 Develop a shared vision for energy storage innovation in the UK: for those
working in the field, but also those in related areas

Scope

O A high-level roadmap of how energy storage could integrate into future

energy systems, considering possible scenarios

0 Research and innovation across technical and non-technological challenges

R&D needs

‘ # Feedback of

Research &
Development

Demonstration H Deployment

1
1
! 1
underpinning R&D to mitigate perceived technical, :
market & financial risks ‘

applied R&D to address technical i

Basic R&D:

* speculative, science led
* industry needs led

>

N

I Pilot Scale Demonstrator

Technology Considerad

*Commercially Proven™ &
Economies of Scale

ssues ‘
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: Pre-Commercial Full-
‘ Scale Implementation

Achieved



https://erpuk.org/project/uk-energy-innovation-2/

Energy system scenarios — demand side
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stem scenarios — supply side
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‘Energy and emissions projections’ (2020)




Timescale

Seconds

Minutes

Hours

Hours - days
Months

Challenge

Renewable generation introduces harmonics and affects
power supply quality.

Reduced inertia from less rotating machinery.

Rapid ramping to respond to changing supply (wind, PV)
and demand (EVs, HPs).

Increasing daily peak in electricity demand for heat and
EVs.

Variability of weather affecting wind and PV generation.

Increased use of electricity for heat leads to strong
seasonal demand profile.

Seasonal variability affecting wind and PV generation.



Electricity system flexibility

Most electricity system flexibility in the UK has come from non-nuclear
thermal generation capacity, fuelled by natural gas or coal

Interconnectors also provide 9% of electricity in the UK
Pumped storage operates to meet peak demand and ancillary services
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GW

‘Medium duration’ electricity variability
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http://gridwatch.templar.co.uk/
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Intrinsic storage in the gas network provides peaking capacity for heating.
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electricity supply Winter 2017/2018. 2018, UK Energy Research Centre: London.



Energy storage technologies are emerging as a
way of providing flexibility and resilience

Broad family of technologies, with different characteristics:

mechanical (e.g. pumped-hydro, flywheels)

thermo-mechanical (e.g. liquid air, compressed air, pumped thermal)
electrical (e.g. capacitors)

electrochemical (e.g. lithium-ion batteries)

thermal (e.g. hot water tanks, molten salt)

chemical (e.g. fossil fuels, hydrogen)

O 0O 000 0

Can be integrated across the energy system:

O Network connected: transmission/distribution levels

0O Demand-side: ‘behind-the-meter’ batteries, in EVs, building-integrated
O Supply side: pre/post-conversion (e.g. generation integrated, GIES)

- Consider the energy service demand.

Services
Ancillary Reserve Intra-day Inter-day Seasonal Seasonal Black Start |Network UPS
services peak shifting |levelling electrical thermal peak Upgrade
peak shifting |shifting Deferral




Technology maturity
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GW

Scenarios for storage

Uncertainties in technology cost
projections, of storage and alternatives.

Challenge of modelling at sufficient time
and geographic scales, and assessing
whole-system value.

- Wide range of potential deployment, but
possble increases 3 — 10x current scale
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Research & innovation landscape
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Funding by award date (not including £111m

0 RDA&D critical to reducing costs and improving performance of
technologies; and energy systems analysis

O Most funding and publications in the field of batteries...
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Storage needs market value for deployment

O Batteries have benefitted from markets to provide capacity and
frequency response, with costs driven down by auto sector deployment.

O No ‘market pull’ for medium —

incentivise.

Operational energy storage

(September 2020)
PHS 2,828
LAES 5
battery 632
total 3,465
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UK Energy Storage Observatory

https://ukesto.supergenstorage.orq/

QUKESTO

UK Energy Storage Observatory

Map  Satellite
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Roadmap

Current status:

Energy system
O Growth in variable RES - increasing need for ancillary services

Energy storage potential
O Need for quick response/reserve
O Batteries commercial in some auto sector niches and grid markets

R&l priorities:

Continue

O Strengthen electrochemical battery RD&D base [Faraday]
O Assess degradation effects



Early 2020s:

Energy system
O High proportion of RES, fossil fuel reducing, increasing local generation
O Growing take-up of EVs

Energy storage potential

O Medium — large scale inter/intra-day peak shifting/load levelling to maximise
utilisation of networks & capacity; across scales, potentially aggregated

O EV batteries aggregated through V2G

R&l priorities:
Continue
O Electricity market and regulatory reforms to value energy storage services
Act now
O RD&D across potential larger energy scale energy storage technologies
O Investment in EV manufacturing skills/plant
O Technical and policy/regulatory integration of auto/electricity systems
— Systems analysis for EV charging configurations; V2G
— Potential for novel business models
— Analysis of local scale/distributed contributions
0 Environmental/resource impacts of ESTs



Mid - late 2020s

Energy system

O Decarbonisation of heat starting, but no clear technological pathway
O Uncertain nuclear capacity, possible flexibility emerging from CCS
O  Wider transport decarbonisation

Energy storage potential
O Integration with heat demand; seasonal thermal peak shifting
O Battery second-life (& recycling challenges); HGVs

R&l priorities:

Continue

O Environmental impacts of energy storage technologies

Act now

O Develop/test/demo technologies with seasonal timescales

O Circular economy approaches to EV manufacturing

O Systems analysis including heat

Prepare soon

O Technical & policy/regulatory integration of auto/heat/elec systems
O Establish institutional competencies across scales




Conclusions

O 4d

O 4d

Energy storage is not the only option to provide reliability and resilience, but is
credible; without alternatives, fossil fuel may remain locked-in.

Energy storage provision needs to increase significantly across scales and
vectors.

Re-balance energy storage research and innovation funding according to system-
need w.r.t. net-zero, but not diminish the opportunity for batteries.

Large-scale piloting and demonstration of medium — long duration ES.
Develop common analytical and modelling frameworks.

Policy and regulation should (as ever) consider whole-system aspects:
— Integration of power, heat and transport
— Impacts of (massively) distributed energy storage
— Environmental and social impacts of new technologies
Needs market pull mechanisms to reflect the system value of storage.
UK well-placed with academic and business expertise.
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to colleagues in Energy Systems and Policy Analysis group:
O Dr Amruta Joshi

O Dr Suraj Paneru
O PhD student: Barton Yi-Chung Chen
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O Dr Dan Murrant (now at Energy Systems Catapult)

Omar Saeed, Project Manager, Birmingham Centre for Energy Storage
Antzela Fivga, Project Manager Supergen Energy Storage Network+
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Supergen Storage Network Plus EP/S032622/1
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